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Abstract. A class of magnetic control operations permitting one to achieve the Brown and
Carson effect (shrinking or expansion of the wavepacket in coordinate space) by applying
sinusoidal magnetic pulses is presented, with numerical data. An analogue of the Strutt diagramm
for the phenomenon is obtained. We show that the scale operation is achieved as a ‘boomerang
effect’; its repetitions (when applying periodic magnetic pulses), cannot assure the ‘monotonic
tracking’ of the packet size to zero. This is due to a new ‘no go argument’ which forbids the
generation of the multiple squeezing effects without paying a price in the form of intermediate
expansions.

1. Introduction

Current techniques for controlling micro-objects are centred mostly on particle trapping
and cooling [1–3]. The next step is the fine manipulation of quantum states, including the
details of their wave-like behaviour. The subject has several branches, interrelated with
control theory [4]. In quantum mechanics this subject was put forward by Lamb Jr [5] (see
also [6–10]); in the area of squeezed states by Yuen [11] (see also [12–14]); in molecular
physics by Brumer and Shapiro [15], as well as Clark and Huanget al [16, 17]; the feedback
techniques (tracking) by Rabitz and co-workers [18–20].

In practical terms, one of the major difficulties in manipulating the wavepackets is the
infinite dimension of the quantum mechanical space of states (see, e.g., the recent discussion
by Clark [16]). However, in 1976 a method for generating squeezed states inL2(R) was
designed by Yuen [11]. An analogue of the spin echo effect for ‘continuous degrees’ was
found in 1977 [7]. In 1985, the provocative essay ‘Atomic memory’ [21] of Brewer and
Hahn formulated an hypothesis about scenarios permitting one to recover the past states of
many particle systems (see also [22]). The significance of quantum manipulation for subtle
experimental techniques (like that of non-demolishing measurements [23, 24]) was pointed
out independently by several authors; see, for example, Yuen, Lynch and Royer [24–26].

One of the most interesting operations upon wavepackets is scale transformation
(amplification or contraction). The first study dedicated to this particular effect inL2(R) was
carried out by Brown and Carson [12] in terms of coherent states. The same problem admits
alternative approaches in terms of exponential formulae (see Ma and Rhodes [13], Grübl
[27], Bechler [28], Baseiaet al [14]) or in terms of adiabatic invariants (Lewis, Malkin
and Dodonovet al [29–31]). While mathematically complete, the resulting schemes are
not convenient to provide numerical data, which are still missing even for the most natural
experimental arrangements.
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‡ Institute of Theoretical Physics, Warsaw University, ul Hoza 69, 00-681, Warsaw, Poland.
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Below, we shall add a next section to the ‘encyclopedia of manipulations’ by designing
precise prescriptions for squeezing the Schrödinger wavepacket in two space dimensions.
Our tool will be a time-dependent homogeneous magnetic field. We are not interested in all
types of squeezing effects, but only in coordinate squeezing (the Brown and Carson effect
[12]). To be close to laboratory techniques, we shall focus our attention on sinusoidally
pulsating fields and currents. We shall then present an analogue of the Strutt diagram for
the intensity parameters which generate the exact scale effect (the shrinking or expansion
of the Schr̈odinger packet).

As it sometimes happens when existence theorems are replaced by operational
techniques, some new facts emerge. In this case, they offer an alternative for the interesting
idea of ‘observable tracking’ (see [16–20]). We show that while a sequence of multiple
squeezings of the wavepacket is quite an elementary phenomenon, it has the character of
a ‘boomerang’ rather than of a ‘tracking’ effect. This might suggest some new techniques
for control theory.

2. The Schr̈odinger wavepacket in a homogeneous magnetic field

Our system consists of a charged Schrödinger particle in a homogeneous magnetic field
B(t) = B(t)n associated with a cylindrically symmetric electric field, both described by
the vector potential

A(x, t) = − 1
2x×B(t) = − 1

2B(t)x× n (2.1)

wheren is a fixed unit vector defining ourz-axis. Fields of this geometry are produced in
infinite, cylindrical solenoids, withB(t) = (4π/c)I (t), whereI (t) is the solenoid current
density. The space geometry of our field is trivial; the only non-trivial part is the time-
dependentB(t). Note also that the expression (2.1) is exact only ifI (t) = constant;
otherwise, the solenoid currents produce retarded corrections. Computed by applying the
1/c development [32], they are of the order of magnitude∼ε2B(t), whereε = πR/cT , R
is the solenoid radius andT is the magnetic pulse period [33], and they are negligible in
almost all laboratory conditions; we shall thus stick to (2.1). The corresponding Hamiltonian
for the Schr̈odinger particle is

H(t) = 1

2m

(
p− e

c
A
)2
= 1

2m
p2
z −

eB(t)

2mc
Mz + 1

2m

[
p2
x + p2

y +
(
eB(t)

2c

)2

(x2+ y2)

]
(2.2)

and generates the evolution operator

U(t, 0) = e−itp2
z /2mh̄ e(i/h̄)α(t)MzWx(t)Wy(t) (2.3)

where the first two terms stand for the free propagation along the solenoid axisz and for
the rigid rotation aroundz by the angle

α(t) = e

2mc

∫ t

0
B(ξ) dξ.

The non-trivial part of (2.3) contains two structurally identical evolution operatorsWx(t)

andWy(t) describing two twin oscillators inx, px andy, py (compare [14]).
Below we assume thatB(t) repeats some standard pulse pattern in a sequence of intervals

[0, T ], [T , 2T ], . . . , [(n−1)T , nT ], and we shall study the operatorsWx(T ) andWy(T ), the
‘finite analogues’ of the Floquet operators for our process. To deal only with the essential
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parameters, we introduce the new timeτ = t/T and new dimensionless canonical variables.
The evolution equations forWx(t) andWy(t) then take the familiar oscillator form [29–31]

dW

dτ
= −iG(τ)W(τ) (2.4)

G(τ) = p2

2
+ β(τ)2q

2

2
(2.5)

where the pairq, p means either

q =
√
m

T h̄
qx p =

√
T

mh̄
px

or

q =
√
m

T h̄
qy p =

√
T

mh̄
py.

W(τ) is eitherWx(T τ) or Wy(T τ), and β(τ) = eT B(T τ)/2mc comprises all essential
physical information.

Our aim is to find the ‘manipulation function’β(τ) defined in [0, 1] which would
generate atτ = 1 an exact scale transformation of the wavepacketsψ(x) (wherex is the
real variable in the spectrum ofq, andλ is the scale constant):

ψ(x)→ ψλ(x) = 1√
λ
ψ
(x
λ

)
(0 6= λ ∈ R). (2.6)

While the existence of solutions is granted by the Brown and Carson theorem [12],
the purely technical difficulties blocked the study of the laboratory receipts. We shall
show below that the easiest way to obtain the detailed numerical data is by using a matrix
representation of the evolution operators [30, 31, 34, 35].

3. Quantum evolution and classical trajectories

The matrix picture stems naturally from the Heisenberg scheme [30, 31, 35]. For the
quadratic Hamiltonians of form (2.5), the pair of Heisenberg operatorsq(τ) = W(τ)∗qW(τ),
p(τ) = W(τ)∗pW(τ) depend linearly on the initial pairq, p:(

q(τ)

p(τ)

)
= u(τ)

(
q

p

)
(3.1)

and the Schr̈odinger evolution equations (2.4) and (2.5) forW(τ) traduces itself into

du(τ)

dτ
= 3(τ)u(τ) u(0) = 1 (3.2)

where

3(τ) =
(

0 1
−β(τ)2 0

)
. (3.3)

It is essential that the relation (3.1) holds in both classical and quantum cases with
exactly the same matrixu(τ) [8, 10, 30]. The columns ofu(τ) correspond, therefore, to the
c-number orbits of the classical oscillator (2.5). As observed by Royer, this gives a very
simple key to predicting the effects of squeezing (see particularly figure 2 in [35]). Indeed,
since inq, p variables the scale transformation readsq → λq, p → (1/λ)p, the idea is
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to generate the pair of orbits yielding atτ = 1 the canonical transformation (equivalent to
(2.6))

u(1) =
(
λ 0
0 1/λ

)
. (3.4)

We adopt an even simpler variant of this idea. We fix attention on just one classical
orbit, departing fromA0 = (1, 0) (i.e. with q(0) = 1, p(0) = 0), and we shall use it as our
‘indicatrix trajectory’. Its general form can be easily read from the Hamiltonian (2.5).

If the functionβ(τ) in the Hamiltonians (2.5) is fixed, then at anyτ , the phase plane
is covered by a unique vector field which determines the direction of the trajectory at
every point(q, p). However, if β(τ) is manipulable (i.e.β(τ) stands for a wider class
of experimentally admissible external forces), then from every point(q, p) sticks not only
one but an entire bunch of vectors (in general, in form of a cone), defining the admissible
directions in which the trajectory could be continued (figure 1).

Figure 1. A typical phase trajectory of the classical oscillator (2.5) with a manipulable frequency.
The triangles (mobility cones) restrict the admissible tangent vectors of the trajectory. The
time moments in which the trajectory intersects theq-axis are the only ones in which the
corresponding quantum evolution can produce the scale transformations of the Schrödinger’s
wavepacket.

The typical phase trajectory of (2.4) and (2.5) must spiral through a sequence of repeating
sectors (but ifβ(τ) vanishes quickly enough asτ → +∞, it may escape to±q-infinity
after a finite number of turns). We assume that our ‘indicatrix orbit’ turns around the centre,
intersecting theq-axis one or more times. (Note, that too weakβ(τ)2, e.g.β(τ)2 < π2

for all τ ∈ [0, 1], cannot ensure this; cf comparison theorems, Hille [36, p 394]. Now let
A1, A2, A3, . . . be the points andτ1, τ2, τ3, . . . the time moments in which our trajectory
intersects theq andp axes. Consider the evolution matricesu1, u2, u3, . . . generated in the
subsequent time intervals [0, τ1], [τ1, τ2], [τ2, τ3], . . . , i.e. ui = u(τi, τi−1). The matrixu1

brings the initial pointA0(q = 1, p = 0) to A1(q = 0, p = −a1; a1 > 0); hence

u1 =
(

0 1/a1

−a1 b1

)
. (3.5)
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In turn, u2 transformsA1(q = 0, p = −a1) into A2(q < 0, p = 0); and so, it must be
of the form

u2 =
(
b2 1/a2

−a2 0

)
. (3.6)

Thus, the evolution matrix associated with the wider time interval [0, τ2] = [0, τ1) ∪
[τ1, τ2] is

u(τ2, 0) = u2u1 =
(−a1/a2 (a1b1+ a2b2)/a1a2

0 −a2/a1

)
. (3.7)

Now if the pair (b1, b2) is orthogonal to(a1, a2), the matrix (3.7) becomes diagonal,
yielding a scale transformation with a negative scale constantλ = −a1/a2. Notice that
the subsequent evolution matrices corresponding to the next intersections of our trajectory
with q and p axes repeat the general forms of (3.5) and (3.6), although the coefficients
may differ. Consistently, the pointsA1, A3, A5, . . . are the only ones in which the
evolution operator can (though needs not) become a generalized Fourier transformation
(q →−ζp, p→ ζ−1q), whereas the pointsA2, A4, A6, . . . are the only ones where it may
become a scale transformation (with the scale constant negative forA2, A6, . . . and positive
for A4, A8, . . .).

We shall look for solutions when the evolution operator becomes the scale transformation
for someτ = τ2n = 1 (choosen to be our time unit). Our method will consist of integrating
(analytically or numerically) the classical motion trajectories for (3.2) and selecting the
cases when the matrix (3.7) accepts the form (3.4).

4. Exact solutions

Up until now, the only exact solution to (3.4) has been obtained by Grübl [27], for
B(t) being a step function with two constant valuesB1 6= B2 in two subintervals
[0, T1), [T1, T ] ⊆ [0, T ]. In the reduced variables

β(τ) =
{
α1 for 06 τ < τ1

α2 for τ1 6 τ 6 1
(4.1)

where αi = eT Bi/2mc (i = 1, 2), τi = Ti/T . The simplest proof thatβ-jumps (4.1)
can generate scale transformations is obtained in terms of the evolution matrixu(1) which
becomes the product of two matrices induced by constant magnetic fields in [0, τ1) and
[τ1, 1]:

u(1) =
(

cos(α2τ2) sin(α2τ2)/α2

−α2 sin(α2τ2) cos(α2τ2)

)(
cos(α1τ1) sin(α1τ1)/α1

−α1 sin(α1τ1) cos(α1τ1)

)
. (4.2)

Now, whenever

α1τ1 = (n+ 1
2)π α2τ2 = (k + 1

2)π (4.3)

wheren, k are two arbitrary integers, both factors of (4.2) acquire the desired form (3.5)
and (3.6) (of two generalized Fourier matrices with the diagonal termsb1 = b2 = 0) and
the evolution process in [0, 1] produces a scale transformation:

u(1) =
(

0 (−1)n/α2

(−1)n+1α2 0

)(
0 (−1)k/α1

(−1)k+1α1 0

)
= (−1)n+k+1

(
α1/α2 0

0 α2/α1

)
. (4.4)
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The evolution operatorU(T ) given by (2.3), apart of the transformation (4.4) inx, px
and y, py , generates a rotation on thexy plane; however, if (4.3) holds, the rotation
contributes just to another(−1)n+k+1, andU(T ) generates the pure scale transformation†

U(T )∗xU(T ) = λx U(T )∗pxU(T ) = λ−1px

U(T )∗yU(T ) = λy U(T )∗pyU(T ) = λ−1py (4.5)

with

λ = α1/α2. (4.6)

The corresponding Schrödinger wavepacketψ(x, y, z), consistently undergoes a free
evolution in thez-direction and the scale transformation on thexy plane. In an infinitely
long solenoid, an initial state described by

eikz9(x, y) (4.7)

after the two-pulse operation (4.1)–(4.3) must become

eiϕ e−i(kz−ωT )λ−19(λ−1x, λ−1y) (ϕ ∈ R). (4.8)

Note that the packet expansions are obtained for|a1| > |a2|; (the stronger pulse first,
the weaker one later); the contractions, inversely, require|a1| < |a2| (the weaker pulse first,
the stronger one later). The effect is well illustrated by congruences of classical trajectories
propagating in the rectangular pulses (4.1) (see figure 2).

After rectangular pulses (distinguished by their mathematical simplicity), next in
importance are sinusoidal pulses (distinguished by their laboratory merits). While the
analytic solutions are not known, the effect can be described with any desired accuracy
by the trajectory method. For simplicity, we have choosen the magnetic field composed of
the static (background) and sinusoidal parts:

B(t) = B0+ B1 sin(ωt − δ)⇒ β(τ) = α0+ α1 sin(2πτ − δ) (4.9)

whereαj = eBjT /2mc. Our task was to determine the Floquet matrixu(1) for the oscillator
process (3.2) induced by the field (4.9). As a ‘survey region’, we have choosen a rectangle
in the three-dimensional spaceR3 of the dimensionless parametersa = (α0, α1, δ):

2 = [−12, 12]× [−12, 12]× [0, 2π ] = A× [0, 2π ]. (4.10)

As the basic invariant1 = Tr u(1) does not depend on the phaseδ, the Floquet
theory for equations (3.2) and (3.3) permits the prediction (see Reed and Simon [37])
thatA = [−12, 12]× [−12, 12] must be a sum of two domains:As in which |1| < 2 and
the iterations ofu(1) can produce only the limited orbits (the stability region);Ai , in which
|1| > 2 and the iterationsu(1)n = u(n), (n = . . . ,−1, 0, 1, . . .) yield diverging trajectories
(the instability region). The divisory line∂As is an analogue of theStrutt diagrammknown
in the theory of Mathieu functions. To obtain more details, the domain2 was covered by
a net of 106 points in which the numerical integration of (3.2) and (3.3) was carried out,
giving u(1) for every point of the net. The computer was then asked to interpolate, finding:
(1) the setS ⊂ Ai of pairs(α0, α1) (‘scale points’) for which the scale transformation can
be achieved atτ = 1 for someδ ∈ [0, 2π ], (2) for any (α0, α1) ∈ S the values ofδ, for
which the scale transformation indeed occurs and (3) the corresponding values of the scale
constantλ. We found thatS forms a curve (‘scale diagramm’, see figure 3), defining the
first structure detail on the otherwise black chart of the instability area.

† The matrix demonstration (4.2)–(4.8) is relatively recent [33]. Grübl himself, had no confidence to the operator
formulae; he found (4.8) working with the Gaussian wavepackets [27].
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Figure 2. The magnetic Gr̈ubl mechanism. (a), (b) two views of a congruence of classical
trajectories in presence of a squeezing two-pulse pattern (2.1)–(2.5) withβ(t) of the form (4.1)–
(4.3) for |λ| < 1. The trajectories diverge from a common initial point with a common initial
vz to focus again,λ times closer to thez-axis (λ ' 1

3).

Observe that since our ‘manipulation function’β(τ) = eB(T τ)T /2mc is dimensionless,
all mathematical results are translated unambiguously (independently of the units) into
physical conditions. Thus, forα0, α1 in the white area (e.g. for|α0| + |α1| < π ) there
is no squeezing—which might mean thatB0, B1 are too small, but also that the particle is
too heavy or that the operation timeT is too short. The best scale effects (in our search
region) are achieved for the sequence of ‘dark points’ presented in table 1.

To check the results we have fed the magnetic intensities and the phase from the top
row of table 1 into the Lorentz equation and examined congruences of classical trajectories.
Figure 4 shows a congruence, diverging from a single point atτ = 0 with a common initial
velocity componentvz, to be focused atτ = 1 in a new point, closer to the solenoid axis.

By examining the trajectories, we have noticed a curious effect (apparently overlooked
in the traditional theory of squeezing). The squeezing is never achieved as amonotonic
shrinking of a congruence of trajectories, but has a nature of a ‘boomerang effect’: in order
to focus, the trajectories must first dramatically diverge; the focusing then comes as an
‘end surprise’ (figure 5). The persistence of this mechanism, visible for both Grübl and
sinusoidal cases indicates some general law behind.
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Figure 3. The first structure detail on the instability chart (black) for the sinusoidal magnetic
pulses. The interrupted white line (S) collects the points (field amplitudes) (α0, α1) for which
the Floquet operator becomes the exact scale transformations for someδ ∈ [0, 2π ].

Table 1. Numerical data about the sinusoidal pulses generating the best scale effects: the
selected points (magnetic intensities) on the scale curve of figure 3; the corresponding phases
granting the scale transformations; the amplification constants.

(α0, α1) ∈ S δ λ

(−1.000 00, 9.775 39) 0.950 00 4.108 43
2.190 31 0.244 50
4.007 81 4.108 43
5.416 10 0.244 50

(0.699 90, 8.765 76) 1.020 97 4.139 94
2.119 98 0.241 50
4.251 75 4.139 94
5.172 33 0.241 50

(2.299 00, 3.580 10) 0.662 08 −3.327 13
2.479 46 −0.300 66

(2.55555, 3.13286) 0.637 26 −3.225 15
2.504 27 −0.310 10

5. The mechanism of counter-effects

In fact, there exists a simple proof of the inseparability of contractions and expansions for
one-dimensional oscillators (2.5). This inseparability turns out a general law independent
of the particular shape of the oscillator pulses.

Proposition. (Counter-effect lemma). Let β(τ) in (2.5) be any bounded, periodic function
of period 1. Suppose that the evolution defined by the Hamiltonian (2.5) produces a scale
transformation forτ = 1 (and its iterations forτ = n = 1, 2, 3, . . .). Then there exists a
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Figure 4. A shrinking congruence generated by sinusoidal magnetic pulses for the triple of
parameters of figure 3,s3 = (2.2990, 3.5801), δ3 = 2.416 25. The congruence diverges from a
common point with a common initialvz to produce a new focus, 0.3008 times closer from the
solenoid axisz.

Figure 5. A trajectory in the form of arcs generated by a repeated Grübl pattern with|λ| < 1.
Notice a curious boomerang effect: the closer the trajectory approaches to the centre at the
end of every two-pulse period, the further away it must slip in the intermediate time moments
(compare with section 5).

sequence of intermediate time momentsτ = τ1 + n (n = 0, 1, 2, . . .) such that the same
process produces the inverse scale transformation in any time interval [τ1+ n, τ1+ n+ 1].

Proof. Assume that the matrixu(τ) takes the form (3.4) forτ = 1. The indicatrix trajectory
departing from (q = 1, p = 0) at τ = 0 thus arrives at (q = λ, p = 0) at τ = 1. Before
this happens, it must intersect (at least once) the negativep axis (figure 1). Suppose, this
happens at someτ = τ1 (0< τ1 < 1), at a pointq(τ1) (q = 0, p = −a1 < 0). This means
that the matrixu1 = u(0, τ1) must be of the form (3.5) andu2 = u(τ1, τ2) of the form
(3.6) (see the discussion in section 3). Since we assume that the product of both matrices
u2u1 = u(1) is a (diagonal) scale transformation (3.4), hencea1b1+ a2b2 = 0. If the fields
are periodic and the pattern repeats, the entire evolution process is driven by an infinite
sequence of matrices;u1, u2, u1, u2, u1, . . .. In particular, for anyτ = n, the evolution
matrix is

u(n) = u2u1u2u1 . . . u2u1 = (u2u1)
n (5.1)
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whereas atτ = τ1+ n
u(τ1+ n) = (u1u2)

nu1. (5.2)

Notice now that ifa1b1+ a2b2 = 0 and

u1u2 =
(
b1 1/a1

−a1 0

)(
b2 1/a2

−a2 0

)
=
(
λ 0
0 1/λ

)
(5.3)

then simultaneously

u1u2 =
(

0 1/a2

−a2 b2

)(
b1 1/a1

−a1 0

)
=
(

1/λ 0
0 λ

)
. (5.4)

Henceforth, an inavoidable side effect of a sequence of the scale transformations
(3.4) in the intervals [n, n + 1] is the sequence of the inverse scale transformations in
[τ1+ n, τ1+ n+ 1], n = 0, 1, 2, . . .. �

In physical terms our lemma permits us to interpret the ‘boomerang effect’ as the typical
manipulation of theheating areacarried out under conditions of energy resonance between
the particle and the field pulses. The mechanism can be used to achieve an (instantaneous)
cooling, when the packet is amplified, momenta reduced, energy emitted to the external
field. However, if the periodic pulses are not interrupted, the opposite occurs: the packet
shrinks, the energy is re-absorbed and momenta are amplified.

A practical consequence is the limit which the size of the solenoid imposes not only
on the expansions, but also upon the contraction effects. A more general conclusion is
evidently the importance of non-perturbative effects as an alternative branch of the control
technology.

6. Practical and fundamental aspects

The field magnitudes and some limitations of our procedures must be discussed. Since the
values of the dimensionless parametersατ = eBT τ/2mc are fixed by (4.3), the required
pulse intensities are inversely proportional to the operation timeT as well as to the ratio
e/m of the micro-object (a property shared by some other manipulation schemes involving
magnetic fields [9, 10, 38]). Thus, for example, in order to shrink the wavefront of an
electronλ = 104 times, withinT = 10−3 s, a pair of relatively weak magnetic pulses of
'10−5 G and'10−1 G acting for 0.9999× 10−3 s and 10−7 s is sufficient. For the proton,
the pulses should be around 2000 times stronger. For a strongly charged ‘semimacroscopic
particle’ with a massm = 10−15 g and chargeq = 1000e = 10−7 esu the scale contraction
with λ = 10−3 takingT = 1 s would involve magnetic pulses of very high intensity'106 G.
However, if the object travels slowly along the solenoid axis, the experimentalist may have
time enough to accomplish a longer (or iterated) operation with weaker fields (the orders of
magnitude are similar for Grübl and sinusoidal cases). Although the shrinking effect lasts
only an instant, some additional methods might help to perpetuate it. Quite conveniently,
the shrinking operationstarts with a weaker pulse andends upwith a stronger one: this
makes it possible to keep the beam narrow by simply mantaining the strong magnetic field
after the end of the operation.

It seems that this scheme might work as an alternative mechanism to focus particle
beams. The operations of the expansion (amplification [12]),|λ| > 1, open up even
more temptating perspectives. First, it would be interesting to exploit technically the
diffractionless, amplified images (4.8). To scan the ‘instantaneous pictures’ involves the
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problems of time control. Note, however, that the very techniques of time selection have
been successfully applied elsewhere (see, e.g., the ‘coincidence optics’ reported in [39]).

Some fundamental aspects of the ‘amplification operation’ are no less attractive.
According to orthodox quantum mechanics the macroscopic objects, in principle, should
possess the same wave-like properties as microparticles. Neutron spectroscopy seems to
confirm this idea for nucleon packets extended over a space of several centimetres [40–42].
Recent experiments with sodium and beryllium atoms expand the limits still further [43–45].
Yet, the validity of the superposition principle for heavier bodies is the subject of continuing
discussion (see Legget [46], Caldeira and Legget [47], Greenberger [48], Poyatoset al [49];
an opposite view in Diosi [50], Ghirardiet al [51]; see also the gravitational hypothesis
by Penrose [52]). The main difficulty in bringing the discussion into the experimental
arena is the absence of techniques to create ‘macroscopic superposition’ [46]. For ‘huge
micro-objects’ the de Broglie waves [53] diffract slowly and the wavepackets propagate
in the form of ‘needle beams’, with very narrow wavefronts [54]. An idea occurs to us
that, for charged particles, one remedy might be the two-dimensional scale transformation
(4.5)–(4.8), a process which can pump the wavefront to any desired size without affecting
the coherence. If so, the magnetic operation (4.5) and (4.6) (λ > 1) might be a correct
method to call into existence the ‘macroscopic superposition’, if it exists at all.
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[27] Grübl G 1988J. Phys. A: Math. Gen.37 2985
[28] Bechler A 1988Phys. Lett.130A 481
[29] Lewis H R 1968J. Math. Phys.9 1976

Lewis H R and Riesenfeld W B 1969J. Math. Phys.10 1458
[30] Malkin A, Man’ko V I and Trifonow D A 1973 J. Math. Phys.14 576
[31] Dodonov V V, Malkin I A and Man’ko V I 1975 J. Phys. A: Math. Gen.8 19

Dodonov V V, Malkin I A and Man’ko V I 1975 Int. J. Th. Phys.14 37
[32] Infeld L and Plebanski J 1960Motion and Relativity(Warsaw: PWN and Pergamon)
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